def ss(s,n,k):
cost = [0]
cap = [0]
for i in s:
if i=="W":
cost.append(cost[-1]+1)
else:
cost.append(cost[-1])
cap.append(cap[-1]+1)
x = float("inf")
for i in range(n-k+1):
j = i+k
x = min(x,cost[j]-cost[i])
return x
for _ in range(int(input())):
n,k = map(int,input().split())
s = input()
print(ss(s,n,k))
// Code by Krushikesh Shashikant Pisal
#include <bits/stdc++.h>
// #include <ext/pb_ds/assoc_container.hpp>
// #include <ext/pb_ds/tree_policy.hpp>
using namespace std;
// using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
// typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> pbds;
#define all(x) (x).begin(), (x).end()
#define pb push_back;
ll factorial(ll num)
{
return (num == 1 or num == 0) ? 1 : (num * factorial(num - 1)) % 1000000007;
}
bool isPrime(int n)
{
if (n <= 1)
{
return false;
}
if (n <= 3)
{
return true;
}
if (n % 2 == 0 || n % 3 == 0)
{
return false;
}
// Using concept of prime number
// can be represented in form of
// (6*n + 1) or(6*n - 1) hence
// we have to go for every multiple of 6 and
// prime number would always be 1 less or 1 more than
// the multiple of 6.
for (int i = 5; i * i <= n; i = i + 6)
{
if (n % i == 0 || n % (i + 2) == 0)
{
return false;
}
}
return true;
}
ll ceil_fun(ll n, ll num)
{
ll num2 = n / num;
if (n % num == 0)
return num2;
else
return num2 + 1;
}
void krushikesh(ll s)
{
cout<<s<<endl;
}
int main()
{
ll T = 1;
string ans;
ll answer;
cin >> T;
while (T--)
{
ll n,k;
cin>>n>>k;
string s;
cin>>s;
vector<ll> v(n);
ll counter=0;
for(ll i=0;i<n;i++){
if(s[i]=='W'){
counter++;
}
v[i]=counter;
}
ll temp,j;
ll min_val=INT_MAX;
for(ll i=k-1;i<n;i++){
j=i-(k-1);
temp=v[i]-v[j];
if(s[j]=='W'){
temp++;
}
min_val=min(min_val,temp);
}
answer=min_val;
krushikesh(answer);
}
return 0;
}
/*
0 1 2 3 4 5 6 7 8 9 10 11 12 13
*/
1529A - Eshag Loves Big Arrays | 19. Remove Nth Node From End of List |
925. Long Pressed Name | 1051. Height Checker |
695. Max Area of Island | 402. Remove K Digits |
97. Interleaving String | 543. Diameter of Binary Tree |
124. Binary Tree Maximum Path Sum | 1465. Maximum Area of a Piece of Cake After Horizontal and Vertical Cuts |
501A - Contest | 160A- Twins |
752. Open the Lock | 1535A - Fair Playoff |
1538F - Interesting Function | 1920. Build Array from Permutation |
494. Target Sum | 797. All Paths From Source to Target |
1547B - Alphabetical Strings | 1550A - Find The Array |
118B - Present from Lena | 27A - Next Test |
785. Is Graph Bipartite | 90. Subsets II |
1560A - Dislike of Threes | 36. Valid Sudoku |
557. Reverse Words in a String III | 566. Reshape the Matrix |
167. Two Sum II - Input array is sorted | 387. First Unique Character in a String |